Ferulic acid ameliorates nerve injury induced by cerebral ischemia in rats

نویسندگان

  • LEIMING ZHANG
  • HONGSHENG WANG
  • TIAN WANG
  • NA JIANG
  • PENGFEI YU
  • YATING CHONG
  • FENGHUA FU
چکیده

This study was designed to investigate the protective effect of ferulic acid (FA) on nerve injury induced by cerebral ischemia. Focal cerebral ischemia was induced by occlusion of the right middle cerebral artery and reperfusion 90 min later in male Sprague-Dawley rats. Daily treatment of the rats with FA was initiated 30 min after the surgery, and was continued for 7 days. The efficacy of FA against nerve injury was assessed by neurological deficit scores as well as pathohistological observation. The expression levels in the brain and level in the peripheral blood of erythropoietin (EPO) and granulocyte colony-stimulating factor (G-CSF) were analyzed by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), respectively. The results showed that FA attenuated nerve injury of the hippocampus, significantly ameliorated neurological deficits, and increased EPO but not G-CSF expression in the hippocampus and the peripheral blood of ischemic rats. The findings indicate that FA has certain protective effects on the nerve injury of cerebral ischemia, and suggest that promoting EPO in the brain and peripheral blood may be one of the neuroprotective mechanisms of FA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carthamus tinctorius L. ameliorates brain injury followed by cerebral ischemia-reperfusion in rats by antioxidative and anti-inflammatory mechanisms

Objective(s): Carthamus tinctorius L. (CT) or saffloweris widely used in traditional Chinese medicine. This study investigated the effects of CT extract (CTE) on ischemia–reperfusion (I/R) brain injury and elucidated the underlying mechanism. Materials and Methods: The I/R model was conducted by occlusion of both common carotid arteries and right middle cerebral artery for 90 min followed by 24...

متن کامل

Ferulic acid modulates nitric oxide synthase expression in focal cerebral ischemia

Nitric oxide (NO) is generated by three different NO synthase (NOS) isoforms, endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS). It is known that eNOS produces NO, which exerts a protective effect, while iNOS produces NO with neurotoxic effects. Ferulic acid preserves neuronal cells against from cerebral ischemia and glutamate-induced excitotoxicity. This study confirmed the...

متن کامل

Ferulic Acid Attenuates the Injury-Induced Decrease of Protein Phosphatase 2A Subunit B in Ischemic Brain Injury

BACKGROUND Ferulic acid provides a neuroprotective effect during cerebral ischemia through its anti-oxidant function. Protein phosphatase 2A (PP2A) is a serine and threonine phosphatase that contributes broadly to normal brain function. This study investigated whether ferulic acid regulates PP2A subunit B in a middle cerebral artery occlusion (MCAO) animal model and glutamate toxicity-induced n...

متن کامل

Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model

Ferulic acid, a component of the plants Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort, exerts a neuroprotective effect by regulating various signaling pathways. This study showed that ferulic acid treatment prevents the injury-induced increase of collapsin response mediator protein 2 (CRMP-2) in focal cerebral ischemia. Glycogen synthase kinase-3β (GSK-3β) regulates CRMP-2 func...

متن کامل

Ferulic acid prevents the injury-induced decrease of γ-enolase expression in brain tissue and HT22 cells

Ferulic acid is known to act as a protective agent in cerebral ischemia through its anti-oxidant activity. γ-Enolase is a neuron-specific enolase that also exerts a neuroprotective effect. Here, we investigated whether ferulic acid regulates the expression level of γ-enolase in middle cerebral artery occlusion (MCAO)-induced brain injury and glutamate exposure-induced neuronal cell death. Adult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015